
SAAM: An Integrated Network Architecture

for Integrated Services�

Geoffrey G. Xiey Debra Hensgenz Taylor Kiddz John Yarger

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

fxie,hensgen,kidd,yargerg@cs.nps.navy.mil

Abstract
The current network architecture is based predomi-

nantly on stand-alone routers. It is becoming overtaxed

with the introduction of integrated services. In this pa-

per, we propose a Server and Agent based Active network

Management (SAAM) architecture that scales well with in-

tegrated services. SAAM relieves individual routers from

most routing and network management tasks. Instead, it

employs a small number of dedicated servers to perform

these tasks on behalf of the routers. In particular, these

servers maintain a path information base (PIB), with which

network functions, such as QoS routing and re-routing of

real-time flows, can be efficiently implemented. We describe

a scaleable architecture for organizing the servers as well

as a concrete design of the PIB. SAAM has the poten-

tial of offering a common platform where multiple network

functions — such as routing, resource reservation, network

management, accounting and security — can be integrated.

1 Introduction
Existing data networks such as the Internet are built us-

ing sophisticated stand-alone routers. In addition to for-

warding packets, each router is currently required to per-

form elaborate routing and management functions. As the

�Work supported by DARPA under the Next Generation Internet (NGI)

initiative
yCorresonding author
zSupported also by DARPA under contract number E583

networks grow to handle more and increasingly diverse

data, more processing will be required of each router. While

such a “heavy-weight router” approach scales adequately

and is fault tolerant in providing best effort service, it may

not be an efficient solution for integrated services for the

reasons that follow.

First, an integrated services network must guarantee

Quality of Service (QoS) to individual user sessions. To

meet this requirement, QoS based routing is required.

Specifically, the network often needs to reserve resources

(link bandwidth, buffers, etc.) for a set of packets at particu-

lar routers in order to establish an end-to-end flow path with

a specific QoS. Compared to the classical shortest path rout-

ing algorithms, QoS routing algorithms need to deal with

more constraints, and thus require much more processing on

the part of each router [13, 5]. Moreover, it has been shown

that it is desirable to use different QoS routing algorithms

under different conditions to improve network performance

[9]. Having such flexibility also requires more computation

at each router. Therefore, processing overhead will become

a major concern if every router is required to perform QoS

routing.

Second, an integrated services network must support

real-time applications that have very stringent packet delay

bound requirements. Consequently, when a path for a real-

time flow becomes unusable because of a network fault,

a replacement path should be established within a short

time frame. (In other words, the flow should be quickly

re-routed, preferably without involving the end user.) Oth-

erwise, the performance of the corresponding real-time ap-

plication will suffer noticeably. Several schemes have been

proposed to address this problem in the context of a network

with heavy-weight routers. Specifically, they make use of

dispersity routing [1] or backup channels [7]. However,

these schemes also reduce network utilization and increase

the processing requirements of the routers.

In summary, a heavy-weight router can easily become a

performance bottleneck due to a lack of processing power.

The problem is compounded by the fact that integrated ser-

vices will likely require packet forwarding methods that are

much more elaborate than First-In-First-Out (FIFO).

In this paper, we present a Server and Agent based

Active network Management (SAAM) architecture for the

efficient support of integrated services. Specifically, in

SAAM, individual routers are relieved of most routing

and network management tasks. Instead, a small number

of dedicated servers perform these tasks on behalf of the

routers; in particular, the servers maintain a path informa-

tion base (PIB), with which network functions such as QoS

routing and re-routing of real-time flows can be efficiently

implemented.

The use of route servers has been proposed for data

networks [12, 17]. The motivation was to reduce the com-

putational overhead for a set of closely associated routers 1.

QoS routing and re-routing were not considered. Moreover,

our development of SAAM has two additional motivations.

First, we envison SAAM to be the common platform where

different network functions such as routing, resource reser-

vation, network management, accounting, and security can

be integrated. Second, by concentrating network manage-

ment and control to a small number of servers, SAAM can

potentially be used for faster deployment of new services

than is currently possible.

1For example, a set of Internet Service Provider (ISP) routers that share

a Network Access Point (NAP) [17].

The balance of the paper is organized as follows. In Sec-

tion 2, we give an overview of the SAAM architecture and

discuss some important design issues. In Section 3, we de-

scribe in detail a particular design of the PIB, and explain

how SAAM can use the PIB to perform efficient QoS rout-

ing and re-routing of flows without involving the end user.

2 Overview of SAAM Architecture

Before describing the SAAM architecture, we present a

list of issues that have a direct impact on the feasibility of

a server based network architecture. Many of our design

choices are based on the understanding of these issues.

2.1 Design Issues

� Responsiveness. To support integrated services, the

network must be able to detect and react to chang-

ing network conditions, especially QoS degradation

along a path, within a short time frame. Therefore,

SAAM should use a proactive approach in data col-

lection. Moreover, SAAM should aggregate the data

about individual links into “ready to use” path perfor-

mance information.

� Scalability. SAAM must be able to scale to provide

a complete solution for global networks that consist of

hundreds of routers. On one hand, it is desirable to

have a small number of servers. On the other hand,

there is an upper limit on the number of routers that a

server can support. The scalability issue is also very

important when determining how frequently a server

should update its PIB. More frequent updates will re-

sult in more accurate information. However, they also

cause more (computation and communication) over-

head on the network and servers.

� Fault-tolerance. If not carefully designed, the failure

of one SAAM server could have a devastating effect

on the performance of the entire network. Therefore,

servers must be deployed in such a way that the fail-

ure of one server can only affect the performance of a

small set of routers for a short period of time. In addi-

tion, it should be possible to deploy redundant servers.

Figure 1: Logical model of SAAM

2.2 Logical Model of SAAM

SAAM consists of light-weight routers and a small set

of heavy-weight servers. Logically, each router is a client

of a single SAAM server process. (See Figure 1.) Next,

we describe how a particular router and the SAAM server

process interact in this model. For brevity, we will focus on

those aspects related to QoS routing.

SAAM requires (preferably dedicated and real-time) du-

plex communication channels between each router and its

server. We assume that these channels are established when

the router joins the network. The router does not partici-

pate in QoS routing; it updates its flow-based routing table

with route data passed down from the server. Note that the

router can still participate in conventional routing if back-

ward compatibility is required. In such a case, the router

must pre-allocate a set of flow-ids for data that will not be

routed by SAAM.

The SAAM server builds a PIB to support QoS routing.

Specifically, the server identifies those paths or subpaths

that can potentially be used to route flows, and maintains

up-to-date performance parameters for each of them. The

server computes path performance parameters by aggregat-

ing link level performance data passed up from each router. 2

We will present more details on how to build the PIB in

Section 3.

2Details on how to collect such data is beyond the scope of this paper.

2.3 Hierarchical Organization of Servers

To address the scalability issue, SAAM organizes its

servers in a hierarchy. (See Figure 2.) Specifically, at the

first level, SAAM partitions the network into regions, and

sets up one server3 for each region. (A region is repre-

sented by a circle in Figure 2.) The current approach to

network partitioning using Autonomous Systems [10] can

easily be extended to perform this task. Once established,

the SAAM server will perform network functions on behalf

of the routers in its region.

Similar to today’s architecture, each SAAM region has

a subset of routers, called border gateways, through which

data can come in and go out of a region. SAAM uses a par-

ent server at the top level to perform the network functions

that enable communication between these routers.

The main advantage of the above architecture is that it

allows SAAM to build a scalable PIB. The details are de-

scribed in Section 3.2. The hierarchical architecture also

permits SAAM to be gradually deployed into today’s net-

works. Specifically, SAAM can be implemented initially

in one part of a network. The top-level SAAM server will

function as a speaker for all routers in the SAAM part of the

network, i.e., it will become the sole participant in the in-

formation exchange with routers in the other (non-SAAM)

part of the network.

3SAAM also sets up one or more backup servers if high fault tolerance

is required.

Figure 2: Hierarchical organization of SAAM servers

While we examined the simplest two-level server hierar-

chy, it should be noted that this architecture can support a

greater number of levels, as the situation demands.

3 Design of Path Information Base
As discussed earlier, an essential component of our

SAAM architecture is the PIB. When designing a PIB, one

must consider the following two issues:

1. Performance. The PIB will be used by a wide range

of network functions that include routing, resource

reservation and network management. To ensure good

performance of these functions, the PIB should (i)

maintain sufficient information, and (ii) supply that in-

formation in a timely manner.

2. Cost. The overhead of building and maintaining the

PIB should be carefully analyzed and controlled. In

particular, the PIB must scale well as the network size

grows.

In this section, we describe a PIB design that takes ad-

vantage of the SAAM architecture to achieve high perfor-

mance and control cost. To illustrate the benefits of the

design, we also explain how SAAM can make use of the

created PIB to perform efficient QoS routing and re-routing.

For ease of discussion and without loss of generality, we

assume a two-level SAAM server hierarchy like the one

shown in Figure 2.

3.1 Preliminary

First, we describe the system model for our PIB design.

Specifically, we define a path in the context of an integrated

services network, and identify a set of important path pa-

rameters that will be managed by the PIB.

3.1.1 Path definition

In an integrated service network, each network link is

shared by a set of logical service pipes [4], each of which

provides a particular level of network performance mea-

sured by packet delay and packet loss rate. (See Figure 3.)

An ATM virtual path that is dedicated to Constant Bit Rate

(CBR) traffic is an example of a service pipe.

Figure 3: Link shared by service pipes

Specifically, we define the following parameters for a

service pipe (denoted by s):4

D target upper bound on the total packet delay (in sec-

onds); includes queueing delay, transmission delay

and propagation delay; service pipe s offers only

best effort service when D is unspecified

E upper bound on the percentage of packets that in-

cur a delay greater than s�D; service pipe s offers

only best effort service when E is unspecified, and

a guaranteed service when E � �

B amount of pre-allocated link bandwidth; in

bits/second

R bandwidth available for new flows; initially set to

B

We define a path in an integrated services network as

follows.

Definition 1 A path is an ordered sequence of service

pipes. Specifically, an arbitrary path (denoted by �) is rep-

resented by

� �� s�� s�� ���� sK � (1)

where sk is the kth service pipe in the path, k �

�� �� � � � �K.

3.1.2 Path parameters

Next, we list the set of path parameters that will be main-

tained in the PIB. Most of these parameters are generaliza-

tions of what have been defined for a service pipe.

4In this paper, we follow the convention of using the “.” operator to

associate a parameter with an object.

��D the target upper bound on the total packet delay,

which is expressed by5

��D �
X
s��

s�D� (2)

Note that when a rate-based packet service dis-

cipline (e.g., Weighted Fair Queueing) is used at

each service pipe, the target end-to-end delay up-

per bound of a path can be much smaller than the

sum of the target per-hop delay bounds. In such a

case, we re-define s�D to be a target delay upper

bound based on the expected packet arrival time;

hence equation 2 will continue to hold [14, 8].

Such a re-definition will not complicate flow re-

source reservation for the following reason: For

any flow f that uses path �, the delays of its pack-

ets are tightly bounded by

X
s��

s�D�max��� max
p�f

�EAT �p��A�p���� (3)

where p is any packet in the flow, EAT �p� is its

expected arrival time to the first router of �, and

A�p� is the actual arrival time. The upper bound

on �EAT �p�� A�p��, which depends on the type

of traffic policer employed for the flow, can be de-

termined a priori and subtracted from the flow’s

delay bound requirement at flow setup time. For

example, for each packet p in a flow constrained

by a leaky bucket policer with parameters of (�,

�), we have [14]:

EAT �p��A�p� �
�

�
� (4)

��E the upper bound on the percentage of packets that

incur a delay greater than ��D, which is expressed

by

��E �
X
s��

s�E� (5)

The derivation of the above equation is as follows.

Assuming that packet losses of a flow at different

5When appropriate, we consider the path as just a set, rather than an

ordered sequence, of service pipes.

service pipes are independent events6, we have

��� ��E� �
Y
s��

��� s�E�� (6)

Therefore

��E � ��
Y
s��

��� s�E� (7)

� �� ���
X
s��

s�E� (8)

�
X
s��

s�E� (9)

��B the total effective bandwidth, which is defined by

��B � min
s��

fs�Bg� (10)

��R the currently available effective bandwidth, which

is defined by

��R � min
s��

fs�Rg� (11)

��F the set of flows that use �

3.1.3 Link sharing

We assume that a suitable link sharing algorithm [2, 4, 16]

is implemented at every link so that a firewall is established

between the link’s service pipes. Specifically, the perfor-

mance guarantees of one service are independent of those

of other services. For brevity and without loss of gener-

ality, we will focus exclusively on how to build a PIB for

flows requesting a statistical service. Consequently, we as-

sume that each link in the network is a statistical pipe, and

we will represent a path by � a�� a�� ���� aK � where ak is

the kth router in the path. We use f to denote a statistical

flow. There are two QoS parameters associated with f : the

delay bound requirement of f�D and the loss bound require-

ment of f�E. The objective of QoS routing and re-routing

is to allocate, and re-allocate if necessary, a statistical path7

6This is not an overly conservative assumption, considering the fact

that the flow must be sharing service with many other flows when a packet

loss occurs. We have obtained experimental results that support this claim

[15].
7One that contains only statistical service pipes

� that connects the source and the destination of the flow,

and satisfies:

�D � f�D� (12)

�E � f�E (13)

3.2 Building Path Information Base

We follow a divide-and-conquer strategy to control the

cost of building and managing the PIB. The strategy is

based on the following observation: With the hierarchical

architecture of SAAM, it suffices for the SAAM server of

each region to build and manage a relatively small regional

PIB that contains information for only local paths in the

region. Specifically, information for a long-distance path

(i.e., one that crosses multiple regions) is built and managed

jointly by three SAAM servers: a first-level server respon-

sible for the source segment, i.e., from the source to an

outgoing border gateway; another first-level server for the

destination segment, i.e., from an incoming border gateway

to the destination; and the parent server for the middle seg-

ment between the border gateways. In the remainder of this

section, we will focus on how to build a regional PIB.

We also identify and exclude undesirable paths from

each regional PIB to reduce the size of the PIB. Specifi-

cally, paths that contain a loop or have a hop count 8 greater

than a predetermined value Hmax are deemed undesirable.

In our current design, a regional PIB consists of two

arrays of records. The first array — called the Path In-

formation Array (PIA) — contains current information (the

values of D, E, R, the set of active flows, etc.) of each

desirable local path. The second one — called the Update

Information Array (UIA) — holds, for each service pipe, a

list of pointers to all PIA records that describe a path con-

taining the service pipe. With the UIA, a SAAM server will

react quickly when there is a significant change in the per-

formance of a service pipe in its region; in particular, the

server will update only the PIA records of affected paths

following the pointers stored in the UIA, and re-route flows

8in one region

if necessary. (See Section 3.3.) Next, we describe, in de-

tail, the algorithm that a SAAM server will use to build its

regional PIB.

Consider a particular SAAM region and its SAAM

server. Assume that there are M routers in the region.

At boot-up time, the server assigns a unique index i �

f�� �� � � � �Mg to each router; and for each router i, it com-

putes and stores the following set9:

Parents�i�

� fj j there is a service pipe from router j to router ig

(14)

Afterwards, the server uses the following recursive search

algorithm to build its regional PIB. Recall that the objective

is to build the PIA and UIA, which we now formally define

as follows:

PIA�i� j� h�

� f� j � goes from i to j in h hopsg� (15)

� � i� j �M and � � h � Hmax.

UIA�k� l�

� f�i� j� h� n� j service pipe � k� l � is part of the nth

path of PIA�i� j� h�g� (16)

� � k� l �M�

The details of the algorithm are specified in Figure 4. The

algorithm has an average complexity of O�M � gHmax�,

where g is the average size of the Parents set for a router.

Typically l does not exceed �, Hmax is between 6 and 8,

and M should be less than 50 for any given SAAM re-

gion. Therefore, the algorithm is not much of a burden for

the SAAM server. Furthermore, the algorithm needs to be

run only when there is a topological update, e.g., a service

pipe being permanently added or removed, and other such

infrequent events. A service failure will be considered a

short-lived condition and will require only modification to

the parameter values of paths that contain it.

9For efficiency, we implement a set as an array.

3.3 Routing and Re-Routing of Flows

The PIB created by Build SAAM PIB�� is much

more comprehensive than those built using shortest path

algorithms.10 Consequently, SAAM is able to use a more

flexible QoS routing strategy. Specifically, SAAM supports

the integration of multiple QoS routing schemes, each of

which has its own very efficient PIB built on top of the

SAAM PIB. A SAAM server will choose a different scheme

at different times depending on the current state of its re-

gion. Such flexibility is quite desirable, as observed in [9].

The details of the integration are dependent on the specifics

of QoS routing schemes, and are beyond the scope of this

paper. Next, we will explain how SAAM can use the PIB to

perform (i) fast routing of a long distance flow, and (ii) flow

re-routing in the event of a link failure or service malfunc-

tion.

Fast routing of long distance flows

Denote f to be a long distance statistical flow. SAAM uses

the following steps to find a path for the flow. First, upon

receiving the request to set up f , the source region SAAM

server forwards the request to the parent server, selects11

from its PIB a path (denoted by �src) that has the small-

est D among those that go from the source to an outgoing

border gateway, and then sends the information of � src to

the parent server. The parent server, after receiving the for-

warded request, determines in which region the destination

resides, forwards the request to the server of that region,

and then waits for responses from the source and destina-

tion. The destination region SAAM server, upon receiving

the forwarded request, selects from its PIB a minimum-D

path (denoted by �des) from an incoming border gateway

to the destination, and then sends the information of � des

to the parent server. Finally, after receiving the information

of �src and �des, the parent server updates f�D and f�E

by subtracting from them respectively �� src�D � �des�D�

and ��src�E � �des�E�, and then uses an appropriate QoS

10It would be too costly for every router to maintain such a PIB.
11The server can pre-select such paths if faster response is desired.

Algorithm specification

Build SAAM PIB ()

1 V � f�� �� ����Mg ;

2 for (each router i � V) do

3 a��	� i ;

4 h� � ;

5 Add Path�a� h� ;

Add Path (a, h) // add all paths that go to a��	 in h hops

1 W � Parents�a�h� �	�;

2 for (each router j �W) do

3 if (Cause No Loop�a� h� j�)

4 then a�h	� j ;

5 PIA�a�h	� a��	� h�� PIA�a�h	� a��	� h�
S
f� a�h	� a�h� �	� ���� a��	 �g ;

6 UIA�a�h	� a�h� �	�� UIA�a�h	� a�h� �	�
S
f�a�h	� a��	� h� kPIA�a�h	� a��	� h�k�g ;

7 if (h � Hmax)

8 then h� h� � ;

9 Add Path�a� h� ;

where

Cause No Loop�a� h� j� �

�
False if �q such that � � q � h� � and a�q	 � j

True otherwise

Figure 4: Algorithm for building PIA and UIA

routing scheme to search for a suitable path between the

gateways.

Re-routing of flows

The network needs to re-route flows when a link fails or

a service pipe malfunctions.12 Re-routing on a flow by

flow basis would be inefficient and not suitable for real-time

traffic because the number of flows that require re-routing

could be quite large. With the UIA, a SAAM server can re-

route on a path by path basis. Specifically, suppose� i� j �

is the service pipe that fails. Upon detecting the failure, the

12A service pipe malfunction is usually caused by a software problem

such as a bug in the implementation of a packet scheduling algorithm.

server will select from PIA a replacement path with the

minimum D for each path contained in UIA�i� j�.

A SAAM server can also adopt a backtracking scheme

for flow re-routing. The scheme works as follows. The

SAAM server first tries to find a replacement path from i to

j with the minimum D and a hop count no greater than the

design parameter13 Hbak. If unsuccessful, the server would

then try to find a replacement path from each parent of i to

j; and continues the same process until either replacement

paths are found in all subcases or the number of backtrack-

ing steps has exceeded the value of the design parameter

13We are conducting experiments to evaluate the impact ofHbak on the

performance.

Bmax. In the latter case, the SAAM server would then try

re-routing on a path by path basis using UIA�i� j�.

Discussions

Between meeting the delay and loss requirements of a flow,

our approach gives a higher priority to the former. Next, we

give a mathematical justification for such consideration. Let

�� be the best path found by SAAM for a flow f . Consider

the following two cases when f uses ��:

.D

d(
p)

d(p)

Figure 5: Typical delay distribution of a path

1. ���D � f�D and ���E � f�E. We have for any

packet p in the flow,

Pr�d�p� � f�D�

� Pr�d�p� � ���D�� Pr����D 	 d�p� 	 f�D�

(17)

� ���E � Pr����D 	 d�p� � f�D� (18)

where d�p� is defined to be the end-to-end delay of

p. The typical distribution curve of packet delays for

� has a long but uniformly decreasing tail near ��D

along the delay axis. (See Figure 5.) Therefore, the

value of Pr����D 	 d�p� � f�D� could be significant

compared to ���E even if ���D were a little smaller

than f�D. In other words, there should be a very high

likelihood that the loss requirement of f will be satis-

fied by �� if ���D is much smaller, say 20% smaller,

than f�D.

2. ���D � f�D and ���E � f�E. We have for any

packet p in the flow,

Pr�d�p� � f�D�

� Pr����D 	 d�p� � f�D� � Pr�d�p� � ���D�

(19)

� Pr����D 	 d�p� � f�D� � ���E� (20)

From a similar observation described in the previous

case, the value of Pr����D 	 d�p� � f�D� can be

much larger than ���E especially when ���D is sig-

nificantly larger than f�D. In such a case, the actual

packet loss rate of f will likely exceed f�E.

4 Conclusions

We have presented SAAM, a server based network ar-

chitecture for integrated services. Unlike other current

approaches, SAAM relieves individual routers from most

routing and network management tasks. Instead, it em-

ploys a small number of dedicated servers to perform these

tasks on behalf of the routers. We envison SAAM to be the

common platform where different network functions such

as routing, resource reservation, network management, and

security can be integrated.

Acknowledgment

The authors would like to thank David St. John and the

anonymous reviewers for their constructive comments.

References

[1] Anindo Banerjea. Simulation study of the capacity

effects of dispersity routing for fault tolerant realtime

channels. In Proceedings ACM SIGCOMM ’96, pages

194–205, Stanford, CA, August 1996.

[2] Jon C.R. Bennett and Hui Zhang. Hierarchical packet

fair queueing algorithms. IEEE/ACM Transactions on

Networking, 5(5):675–689, October 1997.

[3] J. Case et al. The simple network management proto-

col. Technical Report RFC 1157, Internet Draft, May

1990.

[4] Sally Floyd and Van Jacobson. Link-sharing and

resource management models for packet networks.

IEEE/ACM Transactions on Networking, 3(4):365–

386, August 1995.

[5] R. Guerin, S. Kamat, A. Orda, T. Przygienda, and

D. Williams. QoS routing mechanisms and OSPF ex-

tensions. Technical report, March 1997. Internet Draft

draft-guerin-qos-routing-ospf-01.txt.

[6] R. Guerin and A. Orda. QoS-based routing in net-

works with inaccurate information. In Proceedings of

IEEE INFOCOM ’97, Kobe, Japan, April 1997.

[7] Seungjae Han and Kang G. Shin. Fast restora-

tion of real-time communication service from compo-

nent failures in multi-hop networks. In Proceedings

ACM SIGCOMM ’97, pages 77–88, Cannes, France,

September 1997.

[8] Simon S. Lam and Geoffrey G. Xie. Group prior-

ity scheduling. IEEE/ACM Trans. on Networking,

5(2):205–218, April 1997.

[9] Qingming Ma and Peter Steenkiste. On path selection

for traffic with bandwidth guarantees. In Proceed-

ings of 5th IEEE International Conference on Net-

work Protocols, pages 191–202, Atlanta, GA, October

1997.

[10] Larry L. Peterson and Bruce S. Davie. Computer

Networks, A Systems Approach. Morgan Kaufmann,

1997.

[11] Chotipat Pornavalai, Goutam Chakraborty, and No-

rio Shiratori. QoS based routing algorithm in inte-

grated services packet networks. In Proceedings of

5th IEEE International Conference on Network Pro-

tocols, pages 167–174, Atlanta, GA, October 1997.

[12] Hughes Network Systems. Distributed routers, cen-

tralized control. Technical report, January 1996.

HTML document:

http://www.data.com/Hot Products/Routers/

Distributed Routers.html.

[13] Zheng Wang and Jon Crowcroft. Quality of ser-

vice routing for supporting multimedia applications.

IEEE Journal on Selected Areas in Communications,

(7):1228–1234, September 1996.

[14] Geoffrey G. Xie and Simon S. Lam. Delay guarantee

of Virtual Clock server. IEEE/ACM Trans. on Net-

working, 3(6):683–689, December 1995.

[15] Geoffrey G. Xie and Simon S. Lam. Ad-

mission control and loss management for an

application-level statistical service. In Proceed-

ings of 5th IEEE International Conference on Net-

work Protocols (ICNP ’97), pages 142–151, At-

lanta, GA, October 1997. Also available from

http://www.cs.nps.navy.mil/people/faculty/xie/pub.

[16] Geoffrey G. Xie and Simon S. Lam. Real-time block

transfer under a link sharing hierarchy. IEEE/ACM

Trans. on Networking, 6(1), February 1998. An earlier

version in Proceedings of IEEE INFOCOM ’97, April

1997.

[17] J. Yu, B. Manning, and Y. Rekhter. Router server

technical overview. Technical report, January 1998.

HTML document: http://www.rsng.net/overview.html.

[18] Wei Zhao and Satish K. Tripathi. Routing guaranteed

quality of service connections in integrated services

packet networks. In Proceedings of 5th IEEE In-

ternational Conference on Network Protocols, pages

175–182, Atlanta, GA, October 1997.

